On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML

نویسندگان

  • Matthias Boehm
  • Berthold Reinwald
  • Dylan Hutchison
  • Alexandre V. Evfimievski
  • Prithviraj Sen
چکیده

Many large-scale machine learning (ML) systems allow specifying custom ML algorithms by means of linear algebra programs, and then automatically generate efficient execution plans. In this context, optimization opportunities for fused operators—in terms of fused chains of basic operators—are ubiquitous. These opportunities include (1) fewer materialized intermediates, (2) fewer scans of input data, and (3) the exploitation of sparsity across chains of operators. Automatic operator fusion eliminates the need for hand-written fused operators and significantly improves performance for complex or previously unseen chains of operations. However, existing fusion heuristics struggle to find good fusion plans for complex DAGs or hybrid plans of local and distributed operations. In this paper, we introduce an optimization framework for systematically reason about fusion plans that considers materialization points in DAGs, sparsity exploitation, different fusion template types, as well as local and distributed operations. In detail, we contribute algorithms for (1) candidate exploration of valid fusion plans, (2) cost-based candidate selection, and (3) code generation of local and distributed operations over dense, sparse, and compressed data. Our experiments in SystemML show end-toend performance improvements with optimized fusion plans of up to 21x compared to hand-written fused operators, with negligible optimization and code generation overhead.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Parallelization Strategies for Large-Scale Machine Learning in SystemML

SystemML aims at declarative, large-scale machine learning (ML) on top of MapReduce, where high-level ML scripts with R-like syntax are compiled to programs of MR jobs. The declarative specification of ML algorithms enables—in contrast to existing large-scale machine learning libraries— automatic optimization. SystemML’s primary focus is on data parallelism but many ML algorithms inherently exh...

متن کامل

SystemML: Declarative Machine Learning on Spark

The rising need for custom machine learning (ML) algorithms and the growing data sizes that require the exploitation of distributed, data-parallel frameworks such as MapReduce or Spark, pose significant productivity challenges to data scientists. Apache SystemML addresses these challenges through declarative ML by (1) increasing the productivity of data scientists as they are able to express cu...

متن کامل

SystemML's Optimizer: Plan Generation for Large-Scale Machine Learning Programs

SystemML enables declarative, large-scale machine learning (ML) via a high-level language with R-like syntax. Data scientists use this language to express their ML algorithms with full flexibility but without the need to hand-tune distributed runtime execution plans and system configurations. These ML programs are dynamically compiled and optimized based on data and cluster characteristics usin...

متن کامل

Costing Generated Runtime Execution Plans for Large-Scale Machine Learning Programs

Declarative large-scale machine learning (ML) aims at the specification of ML algorithms in a high-level language and automatic generation of hybrid runtime execution plans ranging from single node, in-memory computations to distributed computations on MapReduce (MR) or similar frameworks like Spark. The compilation of large-scale ML programs exhibits many opportunities for automatic optimizati...

متن کامل

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.00829  شماره 

صفحات  -

تاریخ انتشار 2018